Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Occup Environ Med ; 65(6): 521-528, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36893070

RESUMO

OBJECTIVE: The aim of the study is to evaluate COVID-19 risk factors among healthcare workers (HCWs) before vaccine-induced immunity. METHODS: We conducted a longitudinal cohort study of HCWs ( N = 1233) with SARS-CoV-2 immunoglobulin G quantification by ELISA and repeated surveys over 9 months. Risk factors were assessed by multivariable-adjusted logistic regression and Cox proportional hazards models. RESULTS: SARS-CoV-2 immunoglobulin G was associated with work in internal medicine (odds ratio [OR], 2.77; 95% confidence interval [CI], 1.05-8.26) and role of physician-in-training (OR, 2.55; 95% CI, 1.08-6.43), including interns (OR, 4.22; 95% CI, 1.20-14.00) and resident physicians (OR, 3.14; 95% CI, 1.24-8.33). Odds were lower among staff confident in N95 use (OR, 0.55; 95% CI, 0.31-0.96) and decreased over the follow-up. CONCLUSIONS: Excess COVID-19 risk observed among physicians-in-training early in the COVID-19 pandemic was reduced with improved occupational health interventions before vaccinations.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Estudos Longitudinais , Pandemias , Pessoal de Saúde , Fatores de Risco , Imunoglobulina G
2.
J Occup Environ Med ; 64(9): 788-796, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36054278

RESUMO

OBJECTIVE: This study aims to evaluate COVID-19 cases and vaccine responses among workers in the gaming/entertainment industry. METHODS: Participants provided detailed information on occupational risk factors, demographics, COVID-19 history, and vaccination status through questionnaire. Enzyme-linked immunosorbent assays were used to measure serum antiviral antibodies and neutralizing capacity. RESULTS: Five hundred-fifty individuals participated with n = 228 (41.5%) returning for follow-up. At least 71% of participants were fully vaccinated within 8 months of vaccine availability and COVID-19 rates declined concomitantly. Serum anti-spike IgG levels and neutralizing capacity were significantly (P < 0.001) associated COVID-19 history and vaccine type, but not occupational risk factors, and declined (on average 36%) within 5 months. Few vaccine nonresponders (n = 12) and "breakthrough" infections (n = 1) were noted. CONCLUSIONS: COVID-19 vaccination was associated with a marked decrease in infections; however, individual humoral responses varied and declined significantly over time.


Assuntos
COVID-19 , Jogos de Vídeo , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunoglobulina G , Incidência , América do Norte , Vacinação
3.
PLoS One ; 17(4): e0267757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35482753

RESUMO

Efficient use of nitrogen (N) is essential to protect water quality in high-input organic vegetable production systems, but little is known about the long-term effects of organic management on N mass balances. We measured soil N and tabulated N inputs (organic fertilizers, compost, irrigation water, atmospheric deposition, cover crop seed, vegetable transplant plugs and fixation by legume cover crops) and exports in harvested crops (lettuce, broccoli) over eight years to calculate soil surface and soil system N mass balances for the Salinas Organic Cropping Systems study in Salinas, CA. Our objectives were to 1) quantify the long-term effects of compost, cover crop frequency and cover crop type on soil N, cover crop and vegetable crop N uptake, and yield, and 2) tabulate N balances to assess the effects of these factors on N export in harvested crops, soil N storage and potential N loss. Results show that across all systems only 13 to 23% of N inputs were exported in harvest. Annual compost applications increased soil N stocks but had little effect on vegetable N uptake or yield, increasing the cumulative soil system N balance surplus over eight years by 999 kg ha-1, relative to the system receiving organic fertilizers alone. Annually planted winter cover crops increased N availability, crop uptake and export; however, biological N fixation by legumes negated the positive effect of increased harvest exports on the balance surplus in the legume-rye cover cropped system. Over eight years, rye cover crops improved system performance and reduced the cumulative N surplus by 384 kg ha-1 relative to the legume-rye mixture by increasing N retention and availability without increasing N inputs. Reduced reliance on external compost inputs and increased use of annually planted non-legume cover crops can improve efficient N use and cropping system yield, consequently improving environmental performance.


Assuntos
Fabaceae , Nitrogênio , Agricultura/métodos , Produtos Agrícolas , Fertilizantes/análise , Solo , Verduras
4.
PLoS One ; 16(9): e0252849, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34499652

RESUMO

Reverse vaccinology is an evolving approach for improving vaccine effectiveness and minimizing adverse responses by limiting immunizations to critical epitopes. Towards this goal, we sought to identify immunogenic amino acid motifs and linear epitopes of the SARS-CoV-2 spike protein that elicit IgG in COVID-19 mRNA vaccine recipients. Paired pre/post vaccination samples from N = 20 healthy adults, and post-vaccine samples from an additional N = 13 individuals were used to immunoprecipitate IgG targets expressed by a bacterial display random peptide library, and preferentially recognized peptides were mapped to the spike primary sequence. The data identify several distinct amino acid motifs recognized by vaccine-induced IgG, a subset of those targeted by IgG from natural infection, which may mimic 3-dimensional conformation (mimotopes). Dominant linear epitopes were identified in the C-terminal domains of the S1 and S2 subunits (aa 558-569, 627-638, and 1148-1159) which have been previously associated with SARS-CoV-2 neutralization in vitro and demonstrate identity to bat coronavirus and SARS-CoV, but limited homology to non-pathogenic human coronavirus. The identified COVID-19 mRNA vaccine epitopes should be considered in the context of variants, immune escape and vaccine and therapy design moving forward.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Mapeamento de Epitopos , Motivos de Aminoácidos , Sequência de Aminoácidos , Infecções por Coronavirus/imunologia , Humanos , Imunoglobulina G/sangue , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
5.
PLoS One ; 15(2): e0228677, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32027701

RESUMO

Maintaining soil organic carbon (SOC) in frequently tilled, intensive organic vegetable production systems is a challenge that is not well understood. Compost and cover crops are often used to add organic matter to the soil in these systems. Compost contributes relatively stabilized carbon (C) while cover crops provide readily degradable (labile) organic matter. Our objectives were to quantify C inputs, and to assess the effects of urban yard-waste compost, winter cover crop frequency and cover crop type on SOC and labile C stocks during eight years of intensive, organic production that usually included two vegetable crops per year in a long-term systems study in Salinas, California. Total C inputs from pelleted fertilizer, compost, vegetable transplant potting mix, vegetable residue and cover crops, including estimates of below ground inputs, ranged from 40 to 108 Mg ha-1 in the five systems evaluated. Following a rapid decline in SOC stocks in year 1, compost had the largest effect on SOC stocks increasing mean SOC over years 2 to 8 by an average of 9.4 Mg ha-1, while increased cover crop frequency (annual vs. quadrennial) led to an additional 3.4 Mg ha-1 increase. In contrast, cover cropping frequency had the largest effect on permanganate oxidizable labile C (POX-C), increasing POX-C by 26% after 8 years. Labile POX-C was well correlated with microbial biomass C and nitrogen. Compost had the greatest effect on total SOC stocks, while increasing cover crop frequency altered the composition of SOC by increasing the proportion of labile C. These results suggest that frequent winter cover cropping has a greater potential than compost to increase nutrient availability and vegetable yields in high-input, tillage intensive vegetable systems.


Assuntos
Carbono/análise , Produtos Agrícolas/crescimento & desenvolvimento , Solo/química , California , Compostagem , Estações do Ano , Verduras
6.
Sleep ; 42(6)2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-30854559

RESUMO

STUDY OBJECTIVES: To clarify whether hypersomnolence disorder is associated with a specific sleep phenotype and altered neurophysiological function in persons with and without hypersomnolence disorder and major depressive disorder (MDD). METHODS: Eighty-three unmedicated persons with and without hypersomnolence disorder and/or MDD underwent ad libitum high-density EEG polysomnography. Clinical and sleep architecture variables were compared between groups. Topographic patterns of slow-wave activity (SWA) relative to healthy controls were compared, with correlations between topographic SWA and daytime sleepiness assessed. Reductions in SWA in hypersomnolence disorder were mapped to specific cortical areas using source localization. RESULTS: Regardless of the presence or absence of comorbid MDD, persons with hypersomnolence disorder had increased sleep duration relative to both controls and persons with MDD without hypersomnolence. Participants with hypersomnolence disorder also demonstrated reduced bilateral centroparietal low-frequency activity during nonrapid eye movement sleep relative to controls, a pattern not observed in persons with MDD but without hypersomnolence. SWA in these regions was negatively correlated with subjective measures of daytime sleepiness. Source localization demonstrated reductions in SWA in the supramarginal gyrus, somatosensory, and transverse temporal cortex in participants with hypersomnolence disorder. CONCLUSIONS: Hypersomnolence disorder is characterized by increased sleep duration with normal sleep continuity, regardless of the presence or absence of comorbid depression. Reduced local SWA may be a specific neurophysiological finding in hypersomnolence disorder. Further research is warranted to elucidate the mechanisms through which these cortical changes are related to clinical complaints of daytime sleepiness.


Assuntos
Ondas Encefálicas/fisiologia , Distúrbios do Sono por Sonolência Excessiva/fisiopatologia , Fenômenos Fisiológicos do Sistema Nervoso , Sono de Ondas Lentas/fisiologia , Sonolência , Adulto , Comorbidade , Depressão/psicologia , Transtorno Depressivo Maior/complicações , Feminino , Objetivos , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Polissonografia
7.
Sleep ; 39(10): 1815-1825, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27568805

RESUMO

STUDY OBJECTIVES: To examine scalp and source power topography in sleep arousals disorders (SADs) using high-density EEG (hdEEG). METHODS: Fifteen adult subjects with sleep arousal disorders (SADs) and 15 age- and gender-matched good sleeping healthy controls were recorded in a sleep laboratory setting using a 256 channel EEG system. RESULTS: Scalp EEG analysis of all night NREM sleep revealed a localized decrease in slow wave activity (SWA) power (1-4 Hz) over centro-parietal regions relative to the rest of the brain in SADs compared to good sleeping healthy controls. Source modelling analysis of 5-minute segments taken from N3 during the first half of the night revealed that the local decrease in SWA power was prominent at the level of the cingulate, motor, and sensori-motor associative cortices. Similar patterns were also evident during REM sleep and wake. These differences in local sleep were present in the absence of any detectable clinical or electrophysiological sign of arousal. CONCLUSIONS: Overall, results suggest the presence of local sleep differences in the brain of SADs patients during nights without clinical episodes. The persistence of similar topographical changes in local EEG power during REM sleep and wakefulness points to trait-like functional changes that cross the boundaries of NREM sleep. The regions identified by source imaging are consistent with the current neurophysiological understanding of SADs as a disorder caused by local arousals in motor and cingulate cortices. Persistent localized changes in neuronal excitability may predispose affected subjects to clinical episodes.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Eletroencefalografia/métodos , Terrores Noturnos/fisiopatologia , Couro Cabeludo/fisiologia , Sonambulismo/fisiopatologia , Adulto , Nível de Alerta/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Terrores Noturnos/diagnóstico , Polissonografia/métodos , Sono/fisiologia , Sonambulismo/diagnóstico , Vigília/fisiologia , Adulto Jovem
8.
PLoS One ; 11(2): e0149770, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26901503

RESUMO

Sleeping brain activity reflects brain anatomy and physiology. The aim of this study was to use high density (256 channel) electroencephalography (EEG) during sleep to characterize topographic changes in sleep EEG power across normal aging, with high spatial resolution. Sleep was evaluated in 92 healthy adults aged 18-65 years old using full polysomnography and high density EEG. After artifact removal, spectral power density was calculated for standard frequency bands for all channels, averaged across the NREM periods of the first 3 sleep cycles. To quantify topographic changes with age, maps were generated of the Pearson's coefficient of the correlation between power and age at each electrode. Significant correlations were determined by statistical non-parametric mapping. Absolute slow wave power declined significantly with increasing age across the entire scalp, whereas declines in theta and sigma power were significant only in frontal regions. Power in fast spindle frequencies declined significantly with increasing age frontally, whereas absolute power of slow spindle frequencies showed no significant change with age. When EEG power was normalized across the scalp, a left centro-parietal region showed significantly less age-related decline in power than the rest of the scalp. This partial preservation was particularly significant in the slow wave and sigma bands. The effect of age on sleep EEG varies substantially by region and frequency band. This non-uniformity should inform the design of future investigations of aging and sleep. This study provides normative data on the effect of age on sleep EEG topography, and provides a basis from which to explore the mechanisms of normal aging as well as neurodegenerative disorders for which age is a risk factor.


Assuntos
Envelhecimento/fisiologia , Eletrocardiografia/métodos , Sono REM/fisiologia , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/fisiopatologia , Polissonografia/métodos
9.
Sleep ; 37(2): 399-407, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24497668

RESUMO

STUDY OBJECTIVES: Obstructive sleep apnea (OSA) is associated with significant alterations in neuronal integrity resulting from either hypoxemia and/or sleep loss. A large body of imaging research supports reductions in gray matter volume, alterations in white matter integrity and resting state activity, and functional abnormalities in response to cognitive challenge in various brain regions in patients with OSA. In this study, we used high-density electroencephalography (hdEEG), a functional imaging tool that could potentially be used during routine clinical care, to examine the regional distribution of neural activity in a non-clinical sample of untreated men and women with moderate/severe OSA. DESIGN: Sleep was recorded with 256-channel EEG in relatively healthy subjects with apnea-hypopnea index (AHI) > 10, as well as age-, sex-, and body mass index-matched controls selected from a research population initially recruited for a study on sleep and meditation. SETTING: Sleep laboratory. PATIENTS OR PARTICIPANTS: Nine subjects with AHI > 10 and nine matched controls. INTERVENTIONS: N/A. MEASUREMENTS AND RESULTS: Topographic analysis of hdEEG data revealed a broadband reduction in EEG power in a circumscribed region overlying the parietal cortex in OSA subjects. This parietal reduction in neural activity was present, to some extent, across all frequency bands in all stages and episodes of nonrapid eye movement sleep. CONCLUSION: This investigation suggests that regional deficits in electroencephalography (EEG) power generation may be a useful clinical marker for neural disruption in obstructive sleep apnea, and that high-density EEG may have the sensitivity to detect pathological cortical changes early in the disease process.


Assuntos
Encéfalo/fisiopatologia , Eletroencefalografia , Apneia Obstrutiva do Sono/fisiopatologia , Sono/fisiologia , Adulto , Idoso , Mapeamento Encefálico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
10.
Plant Dis ; 98(8): 1050-1059, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30708789

RESUMO

California is the leading producer of lettuce (Lactuca sativa) for the United States and grows 77% of the country's supply. Prior to 2006, coastal California lettuce was only periodically and incidentally infected by a single tospoviruses species: Tomato spotted wilt virus (TSWV). However, beginning in 2006 and continuing through 2012, severe outbreaks of disease caused by Impatiens necrotic spot virus (INSV) have affected the coastal lettuce crop, though TSWV was also present. In contrast, TSWV was the only tospovirus associated with disease outbreaks in Central Valley lettuce during this period. Disease surveys conducted over two seasons (2008 and 2009) in 10 commercial fields (acreage of 6 to 20 ha) indicated that INSV was the only tospovirus associated with economically damaging disease outbreaks in lettuce in the coastal region, with incidences of 0.5 to 27% (mean = 5.7%). Molecular characterization of INSV isolates associated with these disease outbreaks revealed little genetic diversity and indicated that lettuce-infecting INSV isolates were nearly identical to those previously characterized from ornamental or other hosts from different locations in the United States and the world. Monitoring of thrips revealed moderate to large populations in all surveyed lettuce fields, and the majority of thrips identified from these fields were western flower thrips, Frankliniella occidentalis. There was significant positive correlation (r2 = 0.91, P = 0.003) between thrips populations and INSV incidence in the most commonly encountered type of commercial lettuce (romaine, direct seeded, conventional) included in this study. A reverse-transcription polymerase chain reaction assay developed for detection of INSV in thrips showed promise as a monitoring tool in the field. Surveys for INSV reservoir hosts in the coastal production area revealed that the weeds little mallow (Malva parvifolia) and shepherd's purse (Capsella bursa-pastoris) were commonly infected. M. parvifolia plants infected in the field did not show obvious symptoms, whereas plants of this species inoculated in the laboratory with INSV by sap transmission developed necrotic spots and chlorosis. Eleven other weed species growing in the lettuce production areas were found to be hosts of INSV. Coastal crops found to be infected with INSV included basil (Ocimum basilicum), bell pepper (Capsicum annuum), calla lily (Zantedeschia aethiopica), faba bean (Vicia faba), radicchio (Cichorium intybus), and spinach (Spinacia oleracea). Thus, it is likely that INSV was introduced into coastal California lettuce fields via viruliferous thrips that initially acquired the virus from other local susceptible plant species. Results of this study provide a better understanding of INSV epidemiology in coastal California and may help growers devise appropriate disease management strategies.

11.
Plant Dis ; 93(10): 1019-1027, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30754380

RESUMO

Mustard cover crops have been suggested as a potential biofumigant for managing soilborne agricultural pests and weeds. We conducted several experiments in commercial lettuce fields in the Salinas Valley, CA, to evaluate the effects of mustard cover crops on lettuce drop caused by Sclerotinia minor and on weed density and seed viability. In a long-term study, we measured the effects of white and Indian mustard cover crops on the density of S. minor sclerotia in soil, lettuce drop incidence, weed densities, weed seed viability, and crop yield in head lettuce. We also tested broccoli and rye cover crop treatments and a fallow control. Across several short-term studies, we evaluated the density of S. minor sclerotia in soil, lettuce drop incidence, weed densities, and weed seed viability following cover cropping with a mustard species blend. Numbers of sclerotia in soil were low in most experimental locations and were not affected by cover cropping. Mustard cover crops did not reduce disease incidence in the long-term experiment but the incidence of lettuce drop was lower in mustard-cover-cropped plots across the short-term experiments. With the exception of common purslane and hairy nightshade, weed densities and weed seed viability were not significantly reduced by cover cropping with mustard. Head lettuce yield was significantly higher in mustard-cover-cropped plots compared with a fallow control. Glucosinolate content in the two mustard species was similar to those measured in other studies but, when converted to an equivalent of a commercial fumigant, the concentrations were much lower than the labeled rate for lettuce production. Although mustard cover cropping resulted in yield benefits in this study, there was little to no disease or weed suppression.

12.
Mycorrhiza ; 15(2): 111-9, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15133724

RESUMO

Arbuscular mycorrhizal (AM) fungi naturally colonize grapevines in California vineyards. Weed control and cover cropping may affect AM fungi directly, through destruction of extraradical hyphae by soil disruption, or indirectly, through effects on populations of mycorrhizal weeds and cover crops. We examined the effects of weed control (cultivation, post-emergence herbicides, pre-emergence herbicides) and cover crops (Secale cereale cv. Merced rye, x Triticosecale cv.Trios 102) on AM fungi in a Central Coast vineyard. Seasonal changes in grapevine mycorrhizal colonization differed among weed control treatments, but did not correspond with seasonal changes in total weed frequency. Differences in grapevine colonization among weed control treatments may be due to differences in mycorrhizal status and/or AM fungal species composition among dominant weed species. Cover crops had no effect on grapevine mycorrhizal colonization, despite higher spring spore populations in cover cropped middles compared to bare middles. Cover crops were mycorrhizal and shared four AM fungal species (Glomus aggregatum, G. etunicatum, G. mosseae, G. scintillans) in common with grapevines. Lack of contact between grapevine roots and cover crop roots may have prevented grapevines from accessing higher spore populations in the middles.


Assuntos
Micorrizas/fisiologia , Vitis/microbiologia , Agricultura , California , Esporos Fúngicos/fisiologia , Vitis/fisiologia
13.
Plant Dis ; 85(6): 585-591, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30823022

RESUMO

In 1998, a devastating outbreak of rust disease severely damaged the garlic crop in California, resulting in yield losses of 51% and an economic loss of 27% to the industry. The disease also occurred in 1999 and 2000, indicating that rust may have become an annual problem in some parts of the state. The presence of urediniospores, two-celled teliospores, and telial paraphyses indicated that the pathogen was Puccinia allii. Isolates from garlic infected onion and chives, but not leek, elephant garlic, or shallot in inoculation experiments. Garlic cloves obtained from diseased plants were planted under controlled conditions, but the resulting plants did not develop rust. Fungicide trials were conducted for 3 years and showed that none of the currently registered materials gave satisfactory control. However, tebuconazole and azoxystrobin provided good protection against rust if sprayed at 10-day intervals. A variety trial of 34 garlic cultivars and selections was planted, inoculated, and evaluated for resistance to rust. Although there was variability in rust severity among the selections, acceptable levels of resistance were not observed in any cultivar.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...